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This study proposes a new four-component algorithm for land use and land cover (LULC) classification using
RADARSAT-2 polarimetric SAR (PolSAR) data. These four components are polarimetric decomposition, Pol-
SAR interferometry, object-oriented image analysis, and decision tree algorithms. First, polarimetric decom-
position can be used to support the classification of PolSAR data. It is aimed at extracting polarimetric
parameters related to the physical scattering mechanisms of the observed objects. Second, PolSAR interfer-
ometry is used to extract polarimetric interferometric information to support LULC classification. Third, the
main purposes of object-oriented image analysis are delineating image objects, as well as extracting various
textural and spatial features from image objects to improve classification accuracy. Finally, a decision tree al-
gorithm provides an efficient way to select features and implement classification. A comparison between the
proposed method and the Wishart supervised classification which is based on the coherency matrix was
made to test the performance of the proposed method. The overall accuracy of the proposed method was
86.64%, whereas that of the Wishart supervised classification was 69.66%. The kappa value of the proposed
method was 0.84, much higher than that of the Wishart supervised classification, which exhibited a kappa
value of 0.65. The results indicate that the proposed method exhibits much better performance than the
Wishart supervised classification for LULC classification. Further investigation was carried out on the respec-
tive contribution of the four components to LULC classification using RADARSAT-2 PolSAR data, and it indi-
cates that all the four components have important contribution to the classification. Polarimetric
information has significant implications for identifying different vegetation types and distinguishing between
vegetation and urban/built-up. The polarimetric interferometric information extracted from repeat-pass
RADARSAT-2 images is important in reducing the confusion between urban/built-up and vegetation and
that between barren/sparsely vegetated land and vegetation. Object-oriented image analysis is very helpful
in reducing the effect of speckle in PolSAR images by implementing classification based on image objects,
and the textural information extracted from image objects is helpful in distinguishing between water and
lawn. The decision tree algorithm can achieve higher classification accuracy than the nearest neighbor clas-
sification implemented using Definiens Developer 7.0, and the accuracy of the decision tree algorithm is sim-
ilar with that of the support vector classification which is implemented based on the features selected using
genetic algorithms. Compared with the nearest neighbor and support vector classification, the decision tree
algorithm is more efficient to select features and implement classification. Furthermore, the decision tree al-
gorithm can provide clear classification rules that can be easily interpreted based on the physical meaning of
the features used in the classification. This can provide physical insight for LULC classification using PolSAR
data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Timely land use and land cover (LULC) information is essential for
urban planning and management. With the rapid growth of China's
economy in the last two decades, the demand for land resources for
industrial and residential purposes has imposed increasing pressure
on the management of agricultural and reserved lands. The insuffi-
ciency of available land has caused land prices to soar. As a result,
many illegal land development schemes are emerging in some of
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China's rapidly developing regions, such as the Pearl River Delta
(PRD). Some illegal land development projects have caused irrevers-
ible environmental problems, such as forest degradation, soil erosion,
and adverse effects on species diversity (Yeh & Li, 1996). Timely LULC
information is important for local governments to create policies that
will enable the maintenance of good balance between land develop-
ment and environmental protection. Remote sensing data obtained
from different optical sensors have been commonly used to charac-
terize and quantify LULC information (Saatchi et al., 1997; Roberts
et al., 2003; Thenkabail et al., 2005). However, conventional optical
remote sensing is limited by weather conditions. Difficulties are en-
countered in collecting timely LULC information in tropical regions
(e.g., PRD) that are characterized by frequent cloud cover. Radar re-
mote sensing, which is not affected by clouds, is therefore an effective
tool for extracting timely LULC information in such regions.

Early studies that have used radar remote sensing to investigate
LULC information have been mainly carried out using the space shut-
tle SIR-C/X-SAR (Saatchi et al., 1997; Pierce et al., 1998). Although the
results of these studies are positive, the airborne radar imagery sys-
tems are only occasionally launched to collect experimental data
within a very short period. The regular investigation of timely LULC
information using radar remote sensing has become practical after
some operational orbital radar systems with SAR, such as the ERS-1
and ERS-2, JERS-1, and RADARSAT-1, were made available for regular
data collection. However, most of the existing orbital SAR systems are
single-frequency types and may create confusion during the separa-
tion and mapping of LULC classes; this confusion stems from the lim-
ited information obtained by single-frequency systems (Ulaby et al.,
1986; Li & Yeh, 2004).

To overcome the difficulty presented by single-frequency SAR
data, some researchers utilized polarimetric SAR (PolSAR) data to in-
vestigate LULC information (Pierce et al., 1994; Du & Lee, 1996; Lee
et al., 2001; Freitas et al., 2008). The results show that PolSAR mea-
surements achieve better classification results than does single-
polarization SAR. The classification of PolSAR images has become an
important research topic since PolSAR images have been made avail-
able through ENVISAT ASAR, ALOS PALSAR, and RADARSAT-2. Many
classification methods for PolSAR data have been explored (Rignot
et al., 1992; Chen et al., 1996; Barnes & Burki, 2006; Alberga, 2007;
Shimoni et al., 2009). Recently, some polarimetric decomposition
theorems have been introduced (Cloude & Pottier, 1996; Freeman &
Durden, 1998; Yang et al., 1998; Cameron & Rais, 2006), and classifi-
cation methods based on decomposition results have been explored
(Cloude & Pottier, 1997; Lee et al., 1999a; Pottier & Lee, 2000;
Ferro-Famil et al., 2001). The polarimetric parameters extracted
using different polarimetric decomposition methods are related to
the physical properties of natural media, and can thus be used to clas-
sify LULC types. In addition to polarimetric information, polarimetric
interferometric SAR (PolInSAR) provides polarimetric interferometric
information related to the structure and complexity of the observed
objects. Substantial improvements in LULC classification can be
achieved by combining polarimetric and polarimetric interferometric
information (Crawford et al., 1999; Gamba & Houshmand, 1999;
Shimoni et al., 2009). Moreover, some studies have indicated that
the fusion of physical and textural information derived from various
SAR polarizations is helpful in improving classification results
(Borghys et al., 2006). Thus far, however, most of the classification
methods are pixel-based in using PolSAR data, especially RADARSAT-
2 data. Utilizing the textural and spatial information of PolSAR images
through pixel-based methods is a difficult approach. Furthermore, the
results of pixel-basedmethods are insufficient for extracting objects of
interest and expediently updating geographical information system
databases.

Object-oriented image analysis has been increasingly used for the
classification of remote sensing data (Geneletti & Gorte, 2003; Gao
et al., 2006; Li et al., 2008; Li et al., 2009; Watts et al., 2009). It enables

the acquisition of a variety of textural and spatial features for improv-
ing the accuracy of remote sensing classification by delineating ob-
jects from remote sensing images. A feature is an attribute that
represents certain information concerning objects of interest. Given
that regions in an image provide considerably more information
than do pixels, many different features for measuring color, shape,
and texture of the associated regions are used (Benz et al., 2004). Fur-
thermore, image objects are less affected by speckle in SAR images
than in pixels. However, with the addition of polarimetric, interfero-
metric, textural, and spatial information, hundreds of features can po-
tentially be incorporated into the object-oriented classification of
PolSAR images. Therefore, feature selection presents a problem in
the object-oriented classification of PolSAR data. Using all available
features in classification is improper because computation is intensive
and some features may degrade classification performance.

Decision tree algorithms can be used to solve the problem of fea-
ture selection in object-oriented classification (Lawrence & Wright,
2001). By examining the effects of every input feature to determine
every split in a final tree, decision tree algorithms can efficiently se-
lect the most important features that achieve the best classification
result. Some studies have shown that decision trees can provide an
accurate and efficient method for the classification of remote sensing
images (Swain & Hauska, 1977; Friedl & Brodley, 1997; McIver &
Friedl, 2002). The improvement achieved by the integration of
object-oriented image analysis and decision tree algorithms for the
classification of multi-spectral optical data has been demonstrated
(Watts et al., 2009). However, there is still a general lack of studies
on the integration of these two methods for the classification of Pol-
SAR data.

The objective of the current study is to examine a new method for
LULC classification using RADARSAT-2 PolSAR data. The proposed
method is based on the integration of polarimetric decomposition,
PolSAR interferometry, object-oriented image analysis, and decision
tree algorithms. To begin with, 66 polarimetric parameters were
extracted using different polarimetric decomposition methods, and
five polarimetric interferometric parameters were extracted using
PolSAR interferometry techniques. Next, the polarimetric and polari-
metric interferometric parameters were combined with the elements
of the backscattering and coherency matrices to form a multichannel
image. During the object-oriented image analysis, image objects were
delineated by implementing multi-resolution segmentation on the
Pauli RGB composition image of RADARSAT-2 PolSAR data. Mean-
while, a total of 1897 features were extracted from the multichannel
image for each image object. After this, a decision tree algorithm was
used to select features and create a decision tree for the LULC classifi-
cation. Finally, the LULC classification was implemented using the
constructed decision tree.

2. Study site and data

The study site is located in Panyu District of Guangzhou City in
Southern China (Fig. 1). Panyu lies at the heart of the PRD, and has
a total land area of 1314 km2 as well as a population of 926,542.
This district was an agricultural area before the economic reform in
1978, but has been transformed recently into a rapidly urbanized
area. Since Panyu became a district of Guangzhou in July 2000, inten-
sive land development has been implemented to provide housing to
the residents of Guangzhou City. Huge profits have been generated
through property development, which resulted in the increase in
land speculation activities and illegal land development. Timely and
accurate LULC information is important for the local government to
create management policies for the control and prevention of illegal
development at its early stage.

RADARSAT-2 is the world's most advanced commercial C-band
SAR satellite. It is designed with significant and powerful technical
advancements, one of which is multi-polarization. RADARSAT-2 can
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transmit horizontal (H) and vertical (V) polarizations depending on
the selected mode. Each scattering element (HH, VV, HV, and VH)
has varying sensitivities to different surface characteristics and prop-
erties, thereby helping improve the discrimination among LULC types.
Two repeat-pass RADARSAT-2 Fine Quad-Pol images (Single Look
Complex), acquired on 21 March 2009 (Fig. 2a) and 14 April 2009, re-
spectively, were used for the LULC classification in this study. The im-
ages have a full polarization of HH, HV, VH, and VV, a resolution of
5.2×7.6 m, and an incidence angle of 31.5°. The multitemporal infor-
mation of the images was not considered in this work, and the image
acquired on 21 March 2009 was used to provide all the information
for the LULC classification, except for the polarimetric interferometric
information that was extracted from the two images.

LULC classes in the study area can be summarized into seven cat-
egories: urban/built-up (UB), water (W), barren/sparsely vegetated
land (BS), forest (F), lawn (L), banana (B), and cropland/natural veg-
etation (CN) (Fig. 3). The field investigations were carried out simul-
taneously with the acquisitions of the images to collect ground truth.
An ALOS image of the 10-m multispectral bands, acquired on 31 No-
vember 2008, was used as a reference map to facilitate the collection
of ground truth in the field investigations (Fig. 2b). In the field inves-
tigations, a total of 727 field plots were selected across the typical
LULC classes using a clustered sampling approach (McCoy, 2005)
(Fig. 4). In a terrain with poor access, this sampling approach enables
the use of most of the accessible sites. A GPS was used to record the
coordinates of these field plots. On the basis of the experience with
multinomial distribution (Congalton & Green, 2009), we collected a
minimum of 50 samples for each category. The sampling size per
field plot in the images ranged from 39 to 603 pixels; this range
was determined using the ground coverage in the photos taken dur-
ing the fieldwork. The collected field plots were divided into two

groups for training and validation. There are 357 plots in the training
group and 370 plots in the validation group. The first group was used
to select features and create a decision tree for classification, while
the second group was used to verify the results of the classification.
The number of the plots and pixels selected for each LULC class in
the training and validation groups is shown in Table 1.

3. Methodology

The methodology is based on the integration of polarimetric de-
composition, PolSAR interferometry, object-oriented image analysis,
and decision tree algorithms. Before any further analysis, the
RADARSAT-2 PolSAR data was filtered using the 5×5 refined Lee Pol-
SAR speckle filter (Lee et al., 1999b). This speckle filter effectively pre-
serves polarimetric information and retains subtle details while
reducing the speckle effect in homogeneous areas.

3.1. Polarimetric decomposition

A distinct characteristic of a PolSAR system is the utilization of po-
larized waves. The observed polarimetric signatures of the electric
field backscattered by the scene depend strongly on the scattering
properties of the image objects. In comparison with conventional
single-polarization SAR, the inclusion of SAR polarimetry allows for
the discrimination of different types of scattering mechanisms that
leads to a significant improvement in the quality of classification re-
sults. Polarimetric decomposition techniques aim to separate a re-
ceived signal by the radar as the combination of the scattering
responses of simpler objects presenting an easier physical interpreta-
tion, which can be used to extract the corresponding target types in
images.

Fig. 1. Study site for LULC classification using RADARSAT-2 PolSAR data in Guangzhou.
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Fig. 2. (a) RADARSAT-2 PolSAR image acquired on 21 March 2009 (Pauli RGB composition), (b) ALOS image acquired on 31 November 2008.

Fig. 3. Typical LULC classes in the study site.
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The Pauli decomposition is a well-known decomposition method
commonly used for PolSAR data (Cloude & Pottier, 1996). In the
Pauli decomposition, backscattering matrix S is expressed as the com-
plex sum of the Pauli matrices.

S ¼ Shh Shv
Svh Svv

� �
¼ affiffiffi

2
p 1 0

0 1

� �
þ bffiffiffi

2
p 1 0

0 −1

� �
þ cffiffiffi

2
p 0 1

1 0

� �
þ dffiffiffi

2
p 1 −j

j 1

� �
ð1Þ

where a, b, c, and d are all complex and are given by:

a ¼ Shh þ Svvffiffiffi
2

p b ¼ Shh−Svvffiffiffi
2

p c ¼ Shv þ Svhffiffiffi
2

p d ¼ j
Shv−Svhffiffiffi

2
p ð2Þ

If the transmit and receive antennas coincide, the backscattering
matrix may be symmetric, with Shv=Svh, and the Pauli matrix basis
can be reduced to the first three matrices. The polarimetric parame-
ters from the Pauli decomposition are associated for three elementary
scattering mechanisms: a stands for single or odd-bounce scattering,
b represents double or even-bounce scattering, and c denotes volume
scattering. The total received power from the four polarimetric chan-
nels of the backscattering matrix is referred to as “span”. Eq. (3)
shows that the span of S can be obtained as follows:

Span ¼ Shhj j2 þ 2 Shvj j2 þ Svvj j2 ¼ aj j2 þ bj j2 þ cj j2 ð3Þ

Thus, the Pauli decomposition of the backscattering matrix is often
employed to represent all the polarimetric information in a PolSAR
image. As shown in Fig. 2a, a Pauli RGB composition image can be
formed with intensities |a|2 (blue), |b|2 (red), and |c|2 (green), which
correspond to clear physical scattering mechanisms. The Pauli RGB

composition image has become the standard for PolSAR image display
and has often been used for visual interpretation.

The backscattering matrix elements can be arranged into a vector:
k=0.707 [Shh+Svv, Shh−Svv, 2Shv], with the tree elements referred to
as the Pauli components of the signal. The 3×3 coherency matrix T3 is
defined as the expected value of kk⁎T (Lee & Pottier, 2009).

T3 ¼
T11 T12 T13
T�
12 T22 T23

T�
13 T�

23 T33

2
4

3
5

¼ 1
2

Shh þ Svvj j2 Shh þ Svvð Þ Shh−Svvð Þ� 2 Shh þ Svvð ÞShv�
Shh−Svvð Þ Shh þ Svvð Þ� Shh−Svvj j2 2 Shh−Svvð ÞShv�
2Shv Shh þ Svvð Þ� 2Shv Shh−Svvð Þ� 4 Shvj j2

2
64

3
75

ð4Þ

where * denotes the conjugate and || denotes the module. Coherency
matrix T3 is a close relative of covariance matrix C3 (Lee & Pottier,
2009). They contain the same information, but this information
comes in different forms.

In addition to the Pauli decomposition, many other decomposition
methods have been proposed to express the measured backscattering
matrix S as a combination of the scattering responses of simpler objects,
or to separate coherency matrix T3 or covariance matrix C3 as the com-
bination of second-order descriptors corresponding to simpler or ca-
nonical objects presented as an easier physical interpretation (Cloude
& Pottier, 1996). Classification methods based on polarimetric decom-
position results have also been explored (Cloude & Pottier, 1997; Lee
et al., 1999a; Pottier & Lee, 2000; Ferro-Famil et al., 2001). However,
most of thesemethodsmerely focused on one polarimetric decomposi-
tionmethod. Shimoni et al. (2009) stated that different polarimetric de-
composition methods should be used for land cover classification
because they emphasize different land cover types. In the present
study, all the polarimetric decompositionmethods provided by the Pol-
SARPro_v4.1.5 software (López-Martínez et al., 2005) were used to ex-
tract polarimetric parameters for classification support. These
decomposition methods are the Pauli (Cloude & Pottier, 1996), Barnes
(Barnes, 1988), Huynen (Huynen, 1970), Cloude (Cloude, 1985), Holm
(Holm & Barnes, 1988), H/A/Alpha (Cloude & Pottier, 1997), Freeman
2 Components (Freeman, 2007), Freeman 3 Components (Freeman &
Durden, 1998), Van Zyl (Vanzyl, 1993), Neumann (Neumann et al.,
2009), Krogager (Krogager, 1990), Yamaguchi (Yamaguchi et al.,
2005), and Touzi (Touzi, 2007) methods. The RGB composition images
that present some of these decompositions are shown in Fig. 5.

Aside from the primary polarimetric parameters extracted
using different polarimetric decomposition methods, some secondary

Fig. 4. Collected filed plots across typical LULC classes in the study site.

Table 1
Number of the plots and pixels selected for each LULC class in the training and valida-
tion groups.

Class Training Validation

Plots Pixels Plots Pixels

Banana 50 8902 50 9423
Urban/built-up 55 9219 52 9137
Cropland/natural vegetation 50 8510 63 9060
Barren/sparsely vegetated land 50 9962 50 8734
Forest 51 7453 55 8476
Lawn 50 9203 50 9871
Water 51 10,900 50 9542
Total 357 64,149 370 64,243
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polarimetric parameters are defined as a function of the primary polari-
metric parameters to simplify the analysis of physical information in
some decomposition methods, such as H/A/Alpha decomposition. These
secondary polarimetric parameters were also calculated and used in the
current work as the complementary for the primary parameters. After
in-depth research on the suitability and usability of the extracted polari-
metric parameters, 66 polarimetric parameters were selected for the
LULC classification (Table 2). The descriptors used in PolSARPro_v4.1.5
for these polarimetric parameters were adopted. The calculation and the
physical interpretation of these polarimetric parameters can be referred
to in the study of Lee and Pottier (2009).

3.2. PolSAR interferometry for LULC classification

A six-element complex scattering target vector k6 can be formed
by stacking two Pauli-scattering target vectors k1 and k2 of fully po-
larimetric interferometric SAR system images from two slightly

different look angles in a repeat-pass interferometric configuration
(Lee & Pottier, 2009).

k6 ¼ k1
k2

� �
¼ 1ffiffiffi

2
p

Shh1 þ Svv1
Shh1−Svv1

2Shv1
Shh2 þ Svv2
Shh2−Svv2

2Shv2

2
6666664

3
7777775

ð5Þ

The 6×6 Pauli coherency T6 matrix is defined as the outer product of
the associated target vector with its conjugate transpose (Lee &
Pottier, 2009).

T6 ¼ k6 ⋅k
�T
6

D E
¼

k1 ⋅k�T1
D E

k1 ⋅k�T2
D E

k2 ⋅k�T1
D E

k2 ⋅k�T2
D E

2
4

3
5 ¼ T11 Ω12

Ω�T
12 T22

� �
ð6Þ

Fig. 5. RGB composition images presenting different polarimetric decompositions.
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where 〈⋅ ⋅⋅〉 indicates temporal or spatial ensemble averaging; T11
and T22 matrices are the conventional polarimetric Hermitian 3×3
complex coherency matrices describing the polarimetric properties
for each individual image; and the Ω matrix is a non-Hermitian
3×3 complex coherency matrix that contains polarimetric and inter-
ferometric correlation information between the two targets k1 and k2.

The complex polarimetric interferometric coherence γ as a
function of the polarization of the two images is then given by
(Papathanassiou & Cloude, 2001):

γ w1;w2ð Þ ¼ w�T
1 Ω12w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT�
1 T11w1

� �
wT�

2 T22w2
� �q ð7Þ

wherew1 andw2 are twounitary complex vectors that define the polar-
ization of the two images. Papathanassiou and Cloude (2001) calculated
three optimum complex polarimetric interferometric coherences –

γopt_1, γopt_2, and γopt_3 – by determining the combination of polariza-
tions that yields the highest coherence. To isolate the polarization-
dependent component of the optimal coherences, their relative values
are defined as:

γopt i ¼
γopt i

��� ���
P3
j¼1

γopt j

��� ��� ð8Þ

The relative optimal coherence spectrum can be fully described by
two parameters, A1 and A2 (Ferro-Famil et al., 2001).

A1 ¼ γopt 1−γopt 2

γopt 1
and A2 ¼ γopt 1−γopt 3

γopt 1
ð9Þ

The PCI Geomatica software was used to implement the co-
registration of the repeat-pass RADARSAT-2 images. The RADARSAT-
2 image package provides a total of 180 tie points that are evenly dis-
tributed across the whole image. These tie points tie the line/pixel po-
sitions in image coordinates to geographical latitude/longitude and
can be used as ground control points (GCP) to register an image to a
geocoded target image. We first created a blank geocoded image
that has the same resolution of the RADARSAT-2 images and then reg-
istered the two RADARSAT-2 images to this geocoded image by using

PCI Geomatica based on the tie points. Visual inspection indicates that
these two mages have been registered perfectly. Five polarimetric in-
terferometric parameters (γopt_1, γopt_2, γopt_3, A1, and A2) were
extracted after the co-registration of the two images (Fig. 6). As
shown in Fig. 6, there is a strong contrast between urban and nonur-
ban areas in the images of polarimetric interferometric parameters.
The repeat cycle of RADARSAT-2 is 24 days, which produces a very
strong temporal decorrelation for nonurban areas, such as croplands
and natural vegetation. Croplands and natural vegetation are signifi-
cantly influenced by temporal decorrelation and lose coherence with-
in a few days or weeks as a result of growth, movement of scatterers,
and changing moisture conditions. In contrast, within urban/built-up
areas, coherence remains high even between image pairs separated
by a long time interval. Therefore, the results in Fig. 6 indicate that ac-
curate polarimetric interferometric information can be extracted
based on the co-registration of images implemented based on the
tie points. To combine polarimetric and polarimetric interferometric
information for LULC classification, we merged the polarimetric and
polarimetric interferometric parameters with the backscattering ma-
trix elements (Shh, Svv, and Shv) and the coherency matrix elements
(T11, T12, T13, T22, T23, and T33) to form a multichannel image. The
backscattering matrix elements were filtered by using the 5×5 box-
car filter in PolSARPro_v4.1.5 before the merging of images. The
next step was to delineate image objects and extract features from
the multichannel image using object-oriented image analysis.

3.3. Object-oriented image analysis for PolSAR images

One way to compensate for the limited information from single-
frequency SAR data is to derive more features, such as texture and
shape, for the classification of SAR images in addition to the tonal in-
formation of pixels. By delineating objects from images, object-
oriented image analysis enables the acquisition of a variety of addi-
tional textural and spatial features, which are helpful in improving
the accuracy of remote sensing classification (Benz et al., 2004). In
this study, the object-oriented package Definiens Developer 7.0
(Baatz et al., 2004) was used to implement the object-oriented
image analysis of PolSAR images.

The multi-resolution segmentation module provided by Definiens
Developer 7.0 was used to perform object delineation based on shape
and color homogeneity. Multi-resolution segmentation is a bottom-
up region-merging technique that begins with single-pixel objects.

Table 2
Polarimetric parameters extracted using different polarimetric decomposition methods for LULC classification using RADARSAT-2 PolSAR data.

Decomposition method Polarimetric parameter

Pauli Pauli_a Pauli_b Pauli_c
Barnes1 Barnes1_T11 Barnes1_T22 Barnes1_T33
Barnes2 Barnes2_T11 Barnes2_T22 Barnes2_T33
Huynen Huynen_T11 Huynen_T22 Huynen_T33
Cloude Cloude_T11 Cloude_T22 Cloude_T33
Holm1 Holm1_T11 Holm1_T22 Holm1_T33
Holm2 Holm2_T11 Holm2_T22 Holm2_T33
H/A/Alpha H/A/A_T11 H/A/A_T22 H/A/A_T33

Entropy(H) PedestalHeight (PH) ShannonEntropy (SE)
DERD PolarizationAsymmetry (PA) PolarizationFraction (PF)
SERD RadarVegetationIndex (RVI) TargetRandomness (PR)
Anisotropy(A) AlphaAngle(α ,α1,α2,α3)

Freeman2Components Freeman2_Vol Freeman2_Ground
Freeman3Components Freeman_Vol Freeman_Odd Freeman_Dbl
VanZyl3Components VanZyl3_Vol VanZyl3_Odd VanZyl3_Dbl
Yamaguchi3Components Yamaguchi3_Vol Yamaguchi3_Odd Yamaguchi3_Dbl
Yamaguchi4Components Yamaguchi4_Vol Yamaguchi4_Odd Yamaguchi4_Dbl

Yamaguchi4_Hlx
Neumann2Components Neumann_delta_mod Neumann_delta_pha
Krogager Krogager_KS Krogager_KD Krogager_KH
Touzi TSVM_alpha_s TSVM_alpha_s1 TSVM_alpha_s2

TSVM_alpha_s3 TSVM_tau_m TSVM_tau_m1
TSVM_tau_m2 TSVM_tau_m3
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During the region-merging process, smaller image objects are merged
into larger ones, and a heuristic optimization procedure is used to
minimize the weighted heterogeneity of the resultant image objects.
Heterogeneity is determined using the standard deviation of color
properties and their shapes as basis. The merging of a pair of adjacent
image objects increases heterogeneity. The process will stop if the
growth exceeds the threshold defined by a scale parameter.

The multichannel image consists of as many as 80 image channels;
thus, it is necessary to select appropriate image channels for image
segmentation. Using all the channels for image segmentation is im-
proper given that some polarimetric or polarimetric interferometric
parameters may degrade segmentation results because some of
these parameters may have large noise. Although the backscattering

and coherency matrices were filtered, there was still considerable
noise in some polarimetric or polarimetric interferometric parame-
ters that were extracted later. For example, large noise exists in ped-
estal height and complex polarimetric interferometric coherences.
Although these parameters represent important information for iden-
tifying some LULC types, they are inappropriate for image segmenta-
tion because of their poor ability to display the accurate boundaries of
land parcels and subtle details. Moreover, the increase in image chan-
nels in image segmentation results in much more computation time.
Therefore, in this study, the image segmentation was implemented
on the Pauli RGB composition image to delineate objects. As previous-
ly mentioned, the Pauli RGB composition image has become the
standard for PolSAR image display because it can represent all the

Fig. 6. Polarimetric interferometric parameters extracted using PolSAR interferometry techniques for LULC classification.
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polarimetric information in a PolSAR image. Furthermore, the Pauli
RGB composition image represents clear physical scattering mecha-
nisms, which allow for clear contrast among different LULC types.
Given that the three channels of the Pauli RGB composition image
correspond to three elementary scattering mechanisms with the
same importance, equal weight was assigned to the three channels
in the image segmentation.

The scale parameter determines the maximum change in the het-
erogeneity that may occur when two objects are merged. Adjusting
the value of the scale parameter influences the average object size.
A higher value leads to larger objects and vice versa. Setting the
scale parameter was a heuristic process. Multi-resolution segmenta-
tion with different scale parameters was carried out to determine
the optimal scale parameter (Fig. 7). The experiment shows that the
segmentation with a scale parameter of 20 was good enough for de-
lineating accurate land parcels and retaining subtle details. Image ob-
jects became too fragmental at a scale parameter smaller than 20.

Because the multichannel image consists of as many as 80 chan-
nels, the number of features that can be extracted from an image ob-
ject is as high as 1897. These features are the indigenous parameters
of Definiens Developer 7.0 (Baatz et al., 2004), and they are listed as
four major categories:

• 320 (4×80) indicators related to the statistical values of each ob-
ject: min, max, mean, and standard deviation of each layer;

• 960 (12×80) indicators related to texture (e.g., gray-level co-
occurrence matrix (GLCM) homogeneity, GLCM contrast, GLCM dis-
similarity, and GLCM entropy);

• 560 (7×80) indicators related to spatial relationship (e.g., mean
difference to neighbors and mean difference to brighter neighbors);

• 57 indicators related to shape (e.g., area, length, number of seg-
ments, and main line curvature/length extracted from an image
object).

3.4. Object-oriented classification using decision tree algorithms

The determination of the features used in the object-oriented clas-
sification of PolSAR data is crucial to the classification result. Decision
trees are commonly used to predict the membership of cases or ob-
jects in the classes of a categorical dependent variable based on
their measurements on one or more predictor variables. Classification
accuracies from decision tree classifiers are often greater than the
maximum likelihood or linear discriminant function classifiers
(Laliberte et al., 2006). Decision tree algorithms have many advan-
tages, which make them suitable for the object-oriented classification
of PolSAR data. (1) They are white box models that are simple to un-
derstand and interpret. If a final tree is constructed for classification,
the classification rules provided by the tree are easily interpreted.
(2) By performing univariate splits and examining the effects of pre-
dictors one at a time, decision trees are able to handle a variety of
types of predictors and require little data preparation. (3) They are
robust and perform well with large datasets in a short period. After
a final tree is constructed based on a full dimensionality of features,
only a calculation of the selected features is needed for classification
by this final tree. This makes classification based on a large number
of features feasible.

In this study, QUEST (Loh & Shih, 1997; Lim et al., 2000) was used
as a decision tree tool to implement the classification. QUEST is a
binary-split decision tree algorithm for classification and data mining.
Training objects were manually drawn on the Pauli RGB composition
image based on the field plots in the training group. After the image
segmentation, the training objects were further segmented into a
large number of sub-objects. More than 2000 training objects were
acquired for the construction of the decision trees. On the basis of
the training objects, we constructed a decision tree using QUEST for
the LULC classification. To remove the sections of the decision tree
that may have arisen from noisy or erroneous data, the tree was

Fig. 7. Determining the optimal scale for the segmentation of the Pauli RGB composition image of RADARSAT-2 PolSAR data.

29Z. Qi et al. / Remote Sensing of Environment 118 (2012) 21–39



Author's personal copy

pruned with 10-fold cross-validation and the 1-SE rule; these are
common methods for pruning decision trees and are embedded in
QUEST. The final tree constructed using QUEST is shown in Fig. 8,
and the selected image channels in the final tree are shown in
Fig. 9. The detailed features selected in the final tree are listed as
follows:

• Layer mean values of T11, T13, T23, Holm2_T22, Krogager_KD, PH,
VanZyl3_Odd, VanZyl3_Vol, Freeman_Odd, and γopt_2

The mean value of an image object that consists of n pixels in chan-
nel c is calculated from the value of the pixels (ci) thus:

mc ¼
1
n

Xn
i¼1

ci ð10Þ

• Standard deviation of Freeman_Vol
The standard deviation of an image object that consists of n pixels in
channel c is calculated from the value of the pixels (ci).

σ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

c2
i
−1

n

Xn
i¼1

ci
Xn
i¼1

ci

 !vuut ð11Þ

• GLCM entropy of Yamaguchi3_Vol
GLCM is a tabulation of how often different combinations of pixel
gray levels occur in an image.

GLCM entropy ¼
XN−1

i;j¼0

pi;j − ln pi;j
� 	

ð12Þ

where i is the row number, j is the column number in the texture cal-
culation cell matrix, N denotes the number of rows or columns of the
cell matrix, and Pi,j is the normalized value in cells i and j, and is de-
fined as:

Pi;j ¼
Vi;jPN−1

i;j¼0
Vi;j

ð13Þ

where Vi,j is the value in cells i and j of the image window. The value
for entropy is high if the elements of GLCM are distributed equally,
and low if the elements are close to either 0 or 1.

The classification rules of the tree model (Fig. 8) can be inter-
preted according to the interaction of C-band microwave energy

Fig. 8. Decision tree constructed using QUEST for LULC classification using RADARSAT-2 PolSAR data.
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with different LULC classes and the physical meaning of the features
used in the classification. The total backscatter from natural vegeta-
tion and croplands includes the return scattered from the vegetation
canopy (volume scattering), those scattered from the soil beneath
(single-bounce scattering), and those from the multiple scattering
between the soil and canopy (volume scattering and single or odd-
bounce scattering). The total backscatter from forest and banana
areas also includes trunk-ground backscatter (double-bounce scat-
tering) and direct backscattering from the trunk (usually small).
Given that C-band primarily interacts with the leaves and small
and secondary branches, vegetation has the typical characteristics
of volume scattering. The main radar return from barren/sparsely
vegetated land and lawn is single-bounce scattering, which is

greatly influenced by soil surface roughness and moisture content.
Water bodies, such as lakes and revisers, are usually distinguished
by low return and are presented on radar imagery as dark areas.
Urban/built-up areas normally have the typical characteristics of
double-bounce scattering. As shown in Fig. 8, at the start, the mean
value of T23 is used to partition all the samples into two groups.
Referring to the physical meaning of the Pauli components, T23
((Shh−Svv)Shv⁎) can be regarded as the sum of double or even-
bounce scattering (Shh−Svv) and volume scattering (Shv). Therefore,
it can be used to distinguish between classes with low radar return,
such as water, barren/sparsely vegetated land, and lawn, and classes
with strong double-bounce scattering and volume scattering, such
as urban/built-up and vegetation. T13 ((Shh+Svv)Shv⁎) can be

Fig. 9. Image channels selected in the decision tree constructed for LULC classification.
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considered as the sum of single or odd-bounce scattering (Shh+Svv)
and volume scattering (Shv). The classes in the left branch of the
mean value of T13 are water and lawn (high soil moisture), which
have lower single-bounce scattering or volume scattering than bar-
ren/sparsely vegetated land, lawn (low soil moisture), and forest in
the shadow of mountains in the right branch. The standard deviation
of Freeman_Vol and the GLCM entropy of Yamaguchi3_Vol are help-
ful in distinguishing between water and lawn. In the field investiga-
tions, barren land plots were observed in some lawn fields because
of the harvest of grass (Fig. 3), which makes the lawn fields more
heterogeneous than water. Therefore, the textural information can
be used to distinguish between water and lawn. The mean value of
T11 is used to distinguish barren/sparsely vegetated land from lawn
and forest in the shadow of mountains. T11 stands for singe or odd-
bounce scattering. Compared with lawn and forest in the shadow
of mountains, barren/sparsely vegetated land has stronger single-
bounce scattering because of low soil moisture and uneven surface.
The mean value of PH is helpful in distinguishing between lawn
and forest in the shadow of mountains. PH is a polarization signature
of measuring randomness in scattering (Durden et al., 1990). The
mean value of Holm2_T22 is used for distinguishing some urban/
built-up areas from vegetation because it corresponds to a high den-
sity of pure targets, such as man-made areas. Krogager_KD is inter-
preted as the power scattered by the diplane-like components
of the Krogager decomposition. The classes in the right branch of
the mean value of Krogager_KD are urban/built-up and some vege-
tation types, which provide stronger double-bounce scattering
than the vegetation types in the left branch. Although Holm2_T22
and Krogager_KD can be used to distinguish most of urban/built-
up areas from vegetation, there is still some confusion between
urban/built-up and vegetation because of similar scattering mecha-
nism. Generally, buildings have the typical characteristics of
double-bounce scattering, and vegetation has the typical character-
istics of volume scattering. However, some buildings have specific
orientations not aligned in the azimuth direction or have complex
structures that backscatter randomly polarized waves thus provid-
ing strong volume scattering, and some vegetation, such as banana
trees, forests, provide strong double-bounce scattering because of
their strong trunks (trunk-ground backscatter). There is also strong
double-bounce scattering from some croplands during the irrigation
(trunk-water backscatter). The polarimetric interferometric infor-
mation (γopt_2) extracted from the repeat-pass RADARSAT-2 images
can be used to identify urban/built-up that tends to be confused
with vegetation because of the similar scattering mechanisms. The
repeat cycle of RADARSAT-2 is 24 days, which produces a very
strong temporal decorrelation for vegetation. However, urban/
built-up area still has strong correlation in 24 days because of their
stable status. Therefore, the contrast between urban/built-up and
vegetation in γopt_2 can be used to distinguish between them. Free-
man_Odd stands for the contribution of the single or odd-bounce
scattering in the Freeman decomposition. There is stronger single
or odd-bounce scattering from cropland/natural vegetation and ba-
nana than from forests because less microwave energy penetrates
the crown layer of forests and interacts with the ground. Therefore,
the mean value of Freeman_Odd is used to distinguish forest from
cropland/natural vegetation and banana. Vanzyl3_Vol corresponds
to the contribution of the volume scattering in the van Zyl decompo-
sition. Given that banana provides more return scattered from its
dense canopy than cropland/natural vegetation, the mean value of
Vanzyl3_Vol can be used to distinguish between banana and crop-
land/natural vegetation. VanZyl3_Odd corresponds to the con-
tribution of the single or odd-bounce scattering in the van Zyl
decomposition. Cropland/natural vegetation and barren/sparsely
vegetated land provide stronger single-bounce scattering (scattered
from the soil beneath) than forest because more microwave energy
penetrates the crown layer of them and interacts with the ground.

The mean value of VanZyl3_Odd thus can be used for distinguishing
forest from cropland/natural vegetation and barren/sparsely vege-
tated land. The mean value of VanZyl3_Vol is used to distinguish be-
tween cropland/natural vegetation and barren/sparsely vegetated
land because the return scattered from the canopy of cropland/
natural vegetation is more than that from barren/sparsely vegetated
land.

Fig. 8 shows that no spatial feature was selected in the tree. This is
because image objects are too fragmental to represent unbroken land
parcels. To delineate the accurate boundaries of land parcels and re-
tain subtle details, we used the small scale parameter to implement
the image segmentation. However, the small scale parameter also
led to an over segmentation of the image, resulting in a large number
of fragmental objects. As shown in Fig. 7, some land parcels were seg-
mented into many fragmental parts (image objects). An image object
usually represents part of a land parcel; thus, using the spatial infor-
mation on land parcels was difficult.

4. Results and discussion

4.1. Comparison between the proposed method and the Wishart
supervised classification

A comparison between the proposed method and the Wishart su-
pervised classification which is based on the coherency matrix (Lee et
al., 1994; Pottier et al., 2005) was made to test the performance of the
proposed method for LULC classification using RADARSAT-2 PolSAR
data (Fig. 10). The Wishart supervised classification is commonly
used for the classification of PolSAR data. This method is a pixel-
based maximum likelihood classifier based on the complex Wishart
distribution for the polarimetric coherency matrix. Using the confu-
sion matrix that was determined using the validation set as basis,
we calculated four statistics for the validation: overall accuracy
(OA), estimate of kappa (Kappa), producer's accuracy (PA), and
user's accuracy (UA) (Story & Congalton, 1986; Congalton & Green,
2009). The accuracy statistics of these two methods is provided in
Tables 3 and 4. The overall accuracy of the proposed method was
86.64%, much higher than that of the Wishart supervised classifica-
tion, which exhibited an overall accuracy of 69.66%. The kappa value
of the proposed method was 0.84, whereas that of the Wishart super-
vised classification was 0.65. Moreover, the proposed method
achieved higher producer's and user's accuracies for all the classes
than did the Wishart supervised classification. The results show that
a huge improvement was achieved using the proposed method com-
pared with the Wishart supervised classification. However, it is still
difficult to distinguish between lawn and barren/sparsely vegetated
land using the proposed method. Lawn normally has higher soil mois-
ture and more even surface than barren/sparsely vegetated land.
Given that the single-bounce scattering from lawn and barren/sparse-
ly vegetated land is greatly influenced by soil surface roughness and
moisture content, the difference between lawn and barren/sparsely
vegetated land can be characterized by RADARSAT-2 PolSAR images
and used for distinguishing between them. However, some lawn
fields have similar characteristics with barren/sparsely vegetated
land because of the harvest of grass. It is therefore difficult to distin-
guish between lawn and barren/sparsely vegetated land when they
are similar even and have similar soil moisture.

Although the comparison between the proposed method and the
Wishart supervised classification indicates that the proposed method
achieves much higher accuracies for LULC classification, it shows only
the effects of using the whole four components, polarimetric decom-
position, PolSAR interferometry, object-oriented image analysis, and
decision tree algorithms. Additional comparisons were made to in-
vestigate the detailed contribution of these four components to
LULC classification using RADARSAT-2 PolSAR data.
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4.2. Contribution of the combination of polarimetric decomposition and
PolSAR interferometry to LULC classification using RADARSAT-2 PolSAR
data

The proposed method was used for the classification by only using
object-oriented image analysis and decision tree algorithms without

polarimetric decomposition and PolSAR interferometry. The classifica-
tion was implemented based on the backscattering and coherency ma-
trices, and the classification result and the accuracy evaluation are
shown in Fig. 10c and Table 5. The comparison between the method
without polarimetric decomposition and PolSAR interferometry and
the method with the four components shows the contribution of the

Fig. 10. LULC classification results (a) Proposed method, (b) Wishart supervised classification based on the coherency matrix, (c) Proposed method without polarimetric decom-
position and PolSAR interferometry, (d) Proposed method without PolSAR interferometry, (e) Proposed method without polarimetric decomposition, (f) Proposed method without
object-oriented image analysis, (g) Proposed method without incorporating textural and spatial information, (h) Proposed method using nearest neighbor classifiers instead of de-
cision tree algorithms, (i) Proposed method using support vector classifiers instead of decision tree algorithms.

Table 3
Classification accuracy of the proposed method.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7908 246 167 0 1102 0 0 9423 83.92
UB 0 8732 0 0 0 405 0 9137 95.57
CN 656 240 7249 454 461 0 0 9060 80.01
BS 0 0 0 5873 0 2861 0 8734 67.24
F 914 74 319 37 7132 0 0 8476 84.14
L 0 260 0 385 0 9226 0 9871 93.47
W 0 0 0 0 0 0 9542 9542 100.0
Total 9478 9552 7735 6749 8695 12,492 9542 64,243
PA (%) 83.44 91.42 93.72 87.02 82.02 73.86 100.00
OA (%) 86.64
Kappa 0.84
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combination of polarimetric decomposition and PolSAR interferometry
to LULC classification. The overall accuracy and the kappa value in-
creased by 8.50% and 0.10 when polarimetric decomposition and
PolSAR interferometry were used in this proposed method. Further-
more, the user's and producer's accuracies for almost all the
classes improved when polarimetric decomposition and PolSAR inter-
ferometry were employed. The user's accuracies for cropland/natural
vegetation, urban/built-up, and forest increased by 39.05%, 13.19%,
and 10.95% respectively. The producer's accuracies for barren/sparsely
vegetated land, forest, urban/built-up, and lawn increased by 16.00%,
15.62%, 8.93%, and 6.45% respectively.

As shown in Fig. 8, some polarimetric and polarimetric interfero-
metric parameters are useful for identifying different vegetation
types and distinguishing between vegetation and urban/built-up.
Table 5 shows that cropland/natural vegetation tended to be confused
with forest or barren/sparsely vegetated land in the classification
without using polarimetric and polarimetric interferometric informa-
tion. Fig. 8 shows that the mean values of VanZyl3_Odd, Freema-
n_Odd, and VanZyl3_Vol are useful in reducing the confusion. The
mean values of VanZyl3_Odd and Freeman_Odd are important for
distinguishing between cropland/natural vegetation and forest. The
mean value of VanZyl3_Vol is helpful for separating cropland/natural
vegetation from barren/sparsely vegetated land. In the classification
without polarimetric and polarimetric interferometric information,
forest in the shadow of mountains was always mistaken for lawn be-
cause there was minimal radar return from both of them (Fig. 11).
The shadow of mountains was not illuminated by the sensor and
the lawn reflected most of the incident radar wave to the opposite di-
rection. Fig. 8 shows that the mean value of PH is helpful for differen-
tiating forest in the shadow of mountains from lawn (Fig. 11). The
mean value of Freeman_Odd is important for distinguishing between
forest and banana. Table 5 shows that urban/built-up was always
confused with some vegetation types, such as forest, banana, and
cropland/natural vegetation. Fig. 8 shows that the mean values of

Holm2_T22, Krogager_KD, and γopt_2 are crucial for reducing the con-
fusion between these vegetation types and urban/built-up because all
these parameters provide useful information for identifying urban/
built-up areas (Fig. 9).

4.3. Contribution of polarimetric decomposition to LULC classification
using RADARSAT-2 PolSAR data

This proposed method was conducted by using the components of
polarimetric decomposition, object-oriented image analysis, and de-
cision tree algorithms without PolSAR interferometry. The classifica-
tion map and the accuracy evaluation are shown in Fig. 10d and
Table 6. The comparison between this classification and the classifica-
tion just using object-oriented image analysis and decision tree
algorithms has demonstrated the importance of polarimetric decom-
position for LULC classification. The overall accuracy and the kappa
value increased by 6.39% and 0.08 when polarimetric parameters
were used in the classification. The result shows that polarimetric
parameters have significant implications for identifying different
vegetation types and distinguishing between vegetation and urban/
built-up. Moreover, polarimetric parameters are also helpful in distin-
guishing between water and lawn. However, the use of polarimetric
parameters made banana prone to classification as urban/built-up
and forest.

4.4. Contribution of PolSAR interferometry to LULC classification using
RADARSAT-2 PolSAR data

This proposed method was implemented by using the compo-
nents of PolSAR interferometry, object-oriented image analysis,
and decision tree algorithms without polarimetric decomposition.
The classification result and the accuracy evaluation are shown in
Fig. 10e and Table 7. The comparison between this classification and
the classification just using object-oriented image analysis and

Table 4
Classification accuracy of the Wishart supervised classification based on the coherency matrix.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7438 694 395 0 896 0 0 9423 78.93
UB 1502 6244 139 1 857 263 131 9137 68.34
CN 873 536 5231 757 1663 0 0 9060 57.74
BS 0 18 317 5267 441 1510 1181 8734 60.30
F 1207 496 802 78 5526 367 0 8476 65.20
L 0 333 2 937 357 6032 2210 9871 61.11
W 0 0 0 2 6 521 9013 9542 94.46
Total 11,020 8321 6886 7042 9746 8693 12,535 64,243
PA (%) 67.50 75.04 75.97 74.79 56.70 69.39 71.90
OA (%) 69.66
Kappa 0.65

Table 5
Classification accuracy of the proposed method without polarimetric decomposition and PolSAR interferometry.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 8599 335 0 0 489 0 0 9423 91.26
UB 595 7527 0 0 610 405 0 9137 82.38
CN 738 597 3711 1974 2040 0 0 9060 40.96
BS 0 0 0 5873 0 2861 0 8734 67.24
F 693 406 308 37 6204 828 0 8476 73.19
L 0 260 0 385 0 9004 222 9871 91.22
W 0 0 0 0 0 260 9282 9542 97.28
Total 10,625 9125 4019 8269 9343 13,358 9504 64,243
PA (%) 80.93 82.49 92.34 71.02 66.40 67.41 97.66
OA (%) 78.14
Kappa 0.74
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decision tree algorithms has demonstrated the contribution of PolSAR
interferometry to LULC classification. The overall accuracy and the
kappa value increased by 5.75% and 0.07 when polarimetric interfer-
ometric information was used in the classification. The result shows
that polarimetric interferometric information is important for reduc-
ing a series of confusions, such as between urban/built-up and vege-
tation, between cropland/natural vegetation and barren/sparsely
vegetated land, and between forest and other vegetation types (e.g.
cropland/natural vegetation, banana, and lawn).

4.5. Contribution of object-oriented image analysis to LULC classification
using RADARSAT-2 PolSAR data

The proposed method was carried out for the classification by
using the components of polarimetric decomposition, PolSAR inter-
ferometry, and decision tree algorithms without object-oriented
image analysis. The classification result and the accuracy evaluation

are shown in Fig. 10f and Table 8. The comparison between the meth-
od without object-oriented image analysis and the method with the
four components has demonstrated the importance of object-
oriented image analysis for LULC classification. The overall accuracy
and the kappa value increased by 9.99% and 0.11 when object-
oriented image analysis was used in the classification. The user's
and producer's accuracies for all the classes increased when object-
oriented image analysis was used; however, the user's accuracy for
barren/sparsely vegetated land exhibited a slight decrease. Moreover,
the proposed method more effectively represented reality than did
the pixel-based method. Lower spatial heterogeneity is observed in
Fig. 10a than in Fig. 10f because the proposed method was less affect-
ed by speckle in the PolSAR images compared with the pixel-based
method. This minimal effect was achieved through the implementa-
tion of the classification based on image objects.

The proposed method was implemented for the classification
by using the four components without incorporating any textural or

Fig. 11. Pedestal height is useful in reducing the confusion between forest in the shadow of mountains and lawn.

Table 6
Classification accuracy of the proposed method without PolSAR interferometry.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7620 913 0 0 890 0 0 9423 80.87
UB 417 8315 0 0 0 405 0 9137 91.00
CN 656 290 7249 454 411 0 0 9060 80.01
BS 0 0 0 5873 0 2861 0 8734 67.24
F 1343 74 319 37 6703 0 0 8476 79.08
L 0 260 0 385 0 9004 222 9871 91.22
W 0 0 0 0 0 0 9542 9542 100.00
Total 10,036 9852 7568 6749 8004 12,270 9764 64,243
PA (%) 75.93 84.40 95.78 87.02 83.75 73.38 97.73
OA (%) 84.53
Kappa 0.82
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spatial feature (Fig. 10g). The accuracy evaluation of the classification
is shown in Table 9. The comparison between the method without in-
corporating any textural or spatial feature and the proposed method
shows the contribution of textural information to the final accuracy
of LULC classification. The overall accuracy and the kappa value of
the proposed method increased by 0.97% and 0.01 compared with
the method in which textural information was not incorporated.
Fig. 8 shows that the standard deviation of Freeman_Vol and the
GLCM entropy of Yamaguchi3_Vol are helpful in distinguishing be-
tween water and lawn. In the field investigation, barren land plots
were observed in some lawn fields because of the harvest of grass
(Fig. 3), which makes lawn fields more heterogeneous than water in
the PolSAR image. This should explain why water has GLCM entropy
of Yamaguchi3_Vol lower than that of lawn.

The results show that object-oriented image analysis contributes
substantially to the final accuracy of LULC classification using PolSAR
data. Besides providing useful textural information to support the
classification, another significant contribution of object-oriented
image analysis is the reduction of the effect of the speckles in PolSAR
images. Although the speckle filters were applied to the PolSAR im-
ages, the speckles still affected the classification results significantly.
Besides the noise in backscattering and coherency matrices, there
was large noise in some polarimetric or polarimetric interferometric
parameters that were extracted later. As shown in Fig. 9, considerable
noise can be observed in some polarimetric or polarimetric interfero-
metric parameters, such as Holm2_T22, pedestal height, and γopt_2.
The images of these parameters are too blurred to retain subtle de-
tails. In the pixel-based classification of PolSAR data, the speckles in
PolSAR images have significant effect on the classification results.
However, this problem can be minimized by using object-oriented
image analysis. Such analysis can effectively reduce the speckle effect
by extracting image objects from the Pauli composition image, which
is good at retaining subtle details, and implementing classification
based on image objects.

4.6. Contribution of decision tree algorithms to LULC classification using
RADARSAT-2 PolSAR data

Classification using the proposed method integrating the nearest
neighbor classifier (Baatz et al., 2004) instead of decision tree algo-
rithms was carried out to investigate the contribution of decision
tree algorithms to the final accuracy of LULC. The nearest neighbor
classifier is a commonly used classification method for object-
oriented classification. The features used in the nearest neighbor clas-
sification were selected using the Feature Space Optimization func-
tion embedded in Definiens Developer 7.0 (Baatz et al., 2004). The
Feature Space Optimization compares the samples for selected classes
with respect to features, and determines the combination of features
that produces the largest average minimum distance between the
samples of different classes. On the basis of the selected features,
we implemented the nearest neighbor classification using Definiens
Developer 7.0. The classification result and the accuracy evaluation
are shown in Fig. 10h and Table 10. The overall accuracy and the
kappa value of the classification using decision tree algorithms in-
creased by 6.19% and 0.072 compared with the classification using
the nearest neighbor classifier. Moreover, the experiment indicates
that QUEST is more efficient than the Feature Space Optimization in
feature selection.

Classification by integrating support vector machines (SVMs)
(Vapnik, 1999) with the proposed method was also conducted in-
stead of just integrating decision tree algorithms. SVMs are power
classification tools that have been used widely, but the main limita-
tion of SVMs is that they cannot automatically select features for clas-
sification. Irrelevant and redundant information usually contaminate
the performance of SVM classifiers. Existing feature selection
methods for a SVM classifier typically fall into two broad categories:
wrappers and filters (Blum & Langley, 1997). Wrappers use a guided
search, such as forward or backward selection, to methodically add or
eliminate features one a time, and trying each resulting combination

Table 7
Classification accuracy of the proposed method without polarimetric decomposition.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 8892 457 0 0 74 0 0 9423 94.36
UB 86 8646 0 0 0 405 0 9137 94.63
CN 751 326 6198 537 1248 0 0 9060 68.41
BS 0 0 0 5873 0 2861 0 8734 67.24
F 1289 268 308 37 5999 575 0 8476 70.78
L 0 0 0 385 260 9004 222 9871 91.22
W 0 0 0 0 0 260 9282 9542 97.28
Total 11,018 9697 6506 6832 7581 13,105 9504 64,243
PA (%) 80.70 89.16 95.27 85.96 79.13 68.71 97.66
OA (%) 83.89
Kappa 0.81

Table 8
Classification accuracy of the proposed method without object-oriented image analysis.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7013 633 614 0 1163 0 0 9423 74.42
UB 278 8090 48 1 315 375 30 9137 88.54
CN 319 397 5974 1248 1122 0 0 9060 65.94
BS 0 20 145 6051 173 1882 463 8734 69.28
F 1017 275 791 105 5731 557 0 8476 67.61
L 0 248 0 830 173 7964 656 9871 80.68
W 0 1 0 1 2 1113 8425 9542 88.29
Total 8627 9664 7572 8236 8679 11,891 9574 64,243
PA (%) 81.29 83.71 78.90 73.47 66.03 66.98 88.00
OA (%) 76.66
Kappa 0.73
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of features to determine which subset of features provide the best
classification performance when used with the chosen classifier.
Given that wrappers use the prediction performance of the particular
learning algorithm used, they often give better results than filters.
Therefore, in this work, a genetic algorithm based wrapper feature se-
lection method was implemented using the Weka 3.6 software
(Witten, et al., 2011) to select features. LibSVM (Chang & Lin, 2011)
was used to implement SVM classification based on the selected fea-
tures. The classification result and the accuracy evaluation are shown
in Fig. 10i and Table 11. The result shows that the accuracy of the SVM
classification is similar with that of the decision tree algorithm. Al-
though the SVM classification achieved a little higher overall accuracy
than the decision tree algorithm, the decision tree algorithm is more
efficient to select features and implement classification. Wrapper ap-
proaches are computationally expensive, as they require the classifier
to be trained and evaluated a large number of times with different
subsets of features. Furthermore, the decision tree algorithm can pro-
vide clear classification rules that can be easily interpreted based on
the physical meaning of the features used in the classification. This
is very helpful in providing physical insight for LULC classification
using PolSAR data.

5. Conclusions

This paper has proposed a new four-component method that inte-
grates polarimetric decomposition, PolSAR interferometry, object-
oriented image analysis, and decision tree algorithms for LULC classi-
fication using RADARSAT-2 PolSAR data. The comparison between the
proposed method and the Wishart supervised classification which is
based on the coherency matrix was made to test their performance
for LULC classification. The analysis shows that the proposed method
can significantly improve the overall accuracy and kappa value of
the Wishart supervised classification by 16.98% and 0.19. Moreover,
the user's and producer's accuracies for all the LULC classes can be

improved using the proposed method compared with theWishart su-
pervised classification. The results indicate that the proposed method
performs much better than does the Wishart supervised classification
for LULC classification using RADARSAT-2 PolSAR data.

Polarimetric parameters extracted using different polarimetric
decomposition methods are related to the scattering properties of
the observed objects; thus, they have significant implications for
the classification of PolSAR data. The overall accuracy and the
kappa value of LULC classification can be improved by 6.39% and
0.08 if polarimetric parameters are used in the classification. This
study has shown that some polarimetric parameters are important
in identifying different vegetation types and distinguishing between
vegetation and urban/built-up. VanZyl3_Odd and Freeman_Odd are
important in distinguishing between cropland/natural vegetation
and forest. VanZyl3_Vol is useful for distinguishing between crop-
land/natural vegetation and barren/sparsely vegetated land. PH can
be used to reduce the confusion between forest in the shadow of
mountains and lawn. Freeman_Odd is helpful in distinguishing be-
tween forest and barren/sparsely vegetated land. Holm2_T22 and
Krogager_KD are important in reducing the confusion between
urban/built-up and vegetation.

PolSAR interferometry can be used to extract useful polarimetric
interferometric information to support LULC classification. This
study has shown that the polarimetric interferometric information
extracted from the repeat-pass RADARSAT-2 images is important in
reducing the confusion between urban/built-up and vegetation,
such as banana trees, forest, and cropland/natural vegetation, that be-
tween cropland/natural vegetation and barren/sparsely vegetated
land, and that between forest and banana trees. The overall accuracy
and kappa value of LULC classification can be improved by 5.75% and
0.07 if polarimetric interferometric information is used in the classifi-
cation. Moreover, the combination of polarimetric and polarimetric
interferometric information can significantly improve the overall ac-
curacy and kappa value of LULC classification by 8.50% and 0.10.

Table 9
Classification accuracy of the proposed method without incorporating textural and spatial information.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7908 246 167 0 1102 0 0 9423 83.92
UB 0 8732 0 0 0 405 0 9137 95.57
CN 656 240 6999 704 461 0 0 9060 77.25
BS 0 0 0 5701 0 2305 728 8734 65.27
F 914 74 319 37 7132 0 0 8476 84.14
L 0 260 0 158 0 9026 427 9871 91.44
W 0 0 0 0 0 0 9542 9542 100.00
Total 9478 9552 7485 6600 8695 11,736 10,697 64,243
PA (%) 83.44 91.42 93.51 86.38 82.02 76.91 89.20
OA (%) 85.67
Kappa 0.83

Table 10
Classification accuracy of the proposed method using the nearest neighbor classifier instead of decision tree algorithms.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 6491 420 921 0 1591 0 0 9423 68.88
UB 321 7138 121 0 1152 214 191 9137 78.12
CN 0 240 7893 589 338 0 0 9060 87.12
BS 0 0 242 6239 0 1060 1193 8734 71.43
F 0 244 1269 157 6260 37 509 8476 73.86
L 0 0 0 975 0 8122 774 9871 82.28
W 0 0 0 0 0 0 9542 9542 100.00
Total 6812 8042 10,446 7960 9341 9433 12,209 64,243
PA (%) 95.29 88.76 75.56 78.38 67.02 86.10 78.16
OA (%) 80.45
Kappa 0.77
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Object-oriented image analysis is very helpful in improving the ac-
curacy of the classification of PolSAR data by reducing the effect of
speckle in PolSAR images and extracting more information for
the classification. The overall accuracy and kappa value of object-
oriented classification of PolSAR data increased by 9.99% and 0.11
compared with those of conventional pixel-based classification.
Speckle in PolSAR images has a significant effect on the accuracy of
the classification of PolSAR data. Object-oriented image analysis can
effectively reduce the speckle effect by implementing classification
based on image objects. Furthermore, the object-oriented classifica-
tion of PolSAR data exhibited better performance in terms of repre-
senting reality than did the pixel-based classification because it was
less affected by speckle. The textural information in PolSAR images
is helpful in enhancing the accuracy of the classification of PolSAR
data. The study has indicated that the standard deviation of Free-
man_Vol and the GLCM entropy of Yamaguchi3_Vol are helpful in dis-
tinguishing between water and lawn.

With the addition of polarimetric, interferometric, textural, and
spatial information, hundreds of features can be potentially incorpo-
rated into the classification of PolSAR data. Decision tree algorithms
proved to be efficient in selecting features and implementing classifi-
cation. The decision tree algorithm can achieve higher classification
accuracy than the nearest neighbor classification implemented using
Definiens Developer 7.0, and the overall accuracy of the decision
tree algorithm is similar with that of the support vector classification
which is implemented based on the features selected using genetic al-
gorithms. Compared with the nearest neighbor and support vector
classification, the decision tree algorithm is more efficient to select
features and implement classification. Furthermore, the decision
tree algorithm can provide clear classification rules that can be easily
interpreted based on the physical meaning of the features used in the
classification. This is very helpful in providing physical insight for
LULC classification using PolSAR data.

The main contribution of the interferometric information extracted
from the repeat-pass RADARSAT-2 PolSAR images (24 days time inter-
val) is reducing the confusion between urban/built-up and vegetation.
The interferometric information extracted from PolInSAR images with
short time interval should have more contribution to the separation of
different vegetation because themagnitude of interferometric coheren-
cy, which is less affected by any amplitude saturation effects, allows
high biomass forest classification even at higher frequencies (Li et al.,
2009). Further studies will be conducted to incorporate this kind of in-
terferometric information into the classification of PolSAR data to
achieve more observation space and higher accuracy.

The segmentation of PolSAR images remains a challenge for
the object-oriented classification of PolSAR data. Although multi-
resolution segmentation implemented on the Pauli RGB composition
image can delineate the accurate boundaries of land parcels and re-
tain subtle details, it creates a huge number of image objects, which
are too fragmental to represent unbroken land parcels. This makes

the utilization of spatial information of land parcels difficult. Further
studies need to be conducted to improve segmentation methods for
PolSAR images.

Acknowledgments

This study was supported by the National Basic Research Program
of China (973 Program) (Grant No. 2011CB707103), the Key National
Natural Science Foundation of China (Grant No. 40830532), and the
Science and Operational Applications Research for RADARSAT-2
Program (SOAR 2762). The authors would like to thank the Canadian
Space Agency (CSA) and the MDA GEOSPATIAL SERVICES INC. for pro-
viding the RADARSAT-2 data.

References

Alberga, V. (2007). A study of land cover classification using polarimetric SAR parame-
ters. International Journal of Remote Sensing, 28, 3851–3870.

Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I.,
Mimler, M., Sohlbach, M., & Weber, M. (2004). eCognition professional user guide
4. Munich: Definiens Imaging.

Barnes, R. M. (1988). Roll-invariant decompositions for the polarization covariance
matrix. Proceedings of Polarimetry Technology Workshop, Redstone Arsenal, AL.

Barnes, C. F., & Burki, J. (2006). Late-season rural land-cover estimation with
polarimetric-SAR intensity pixel blocks and sigma-tree-structured near-neighbor
classifiers. IEEE Transactions on Geoscience and Remote Sensing, 44, 2384–2392.

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-res-
olution, object-oriented fuzzy analysis of remote sensing data for GIS-ready infor-
mation. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239–258.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in ma-
chine learning. Artificial Intelligence, 97, 245–271.

Borghys, D., Yvinec, Y., Perneela, C., Pizurica, A., & Philips, W. (2006). Supervised
feature-based classification of multi-channel SAR images. Pattern Recognition Let-
ters, 27, 252–258.

Cameron, W. L., & Rais, H. (2006). Conservative polarimetric scatterers and their role in
incorrect extensions of the Cameron decomposition. IEEE Transactions on Geosci-
ence and Remote Sensing, 44, 3506–3516.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(27) 1–27:27. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chen, K. S., Huang, W. P., Tsay, D. H., & Amar, F. (1996). Classification of multifrequency
polarimetric SAR imagery using a dynamic learning neural network. IEEE Transac-
tions on Geoscience and Remote Sensing, 34, 814–820.

Cloude, S. R. (1985). Target decomposition-theorems in radar scattering. Electronics
Letters, 21, 22–24.

Cloude, S. R., & Pottier, E. (1996). A review of target decomposition theorems in radar
polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34, 498–518.

Cloude, S. R., & Pottier, E. (1997). An entropy based classification scheme for land appli-
cations of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35,
68–78.

Congalton, R., & Green, K. (2009). Assessing the accuracy of remotely sensed data: princi-
ples and practices. Boca Raton: CRC Press.

Crawford, M. M., Kumar, S., Ricard, M. R., Gibeaut, J. C., & Neuenschwander, A. (1999).
Fusion of airborne polarimetric and interferometric SAR for classification of coastal
environments. IEEE Transactions on Geoscience and Remote Sensing, 37, 1306–1315.

Du, L., & Lee, J. S. (1996). Fuzzy classification of earth terrain covers using complex po-
larimetric SAR data. International Journal of Remote Sensing, 17, 809–826.

Durden, S. L., Vanzyl, J. J., & Zebker, H. A. (1990). The unpolarized component in polar-
imetric radar observations of forested areas. IEEE Transactions on Geoscience and
Remote Sensing, 28, 268–271.

Table 11
Classification accuracy of the proposed method using SVM instead of decision tree algorithms.

Classified
data

Reference data

B UB CN BS F L W Total UA (%)

B 7403 246 483 0 1291 0 0 9423 78.56
UB 0 8732 0 0 0 214 191 9137 95.57
CN 126 290 8053 241 350 0 0 9060 88.89
BS 0 0 43 6295 0 2396 0 8734 72.07
F 731 74 763 0 6908 0 0 8476 81.50
L 0 0 0 385 0 9059 427 9871 91.77
W 0 0 0 0 0 0 9542 9542 100.00
Total 8260 9342 9342 6921 8549 11,669 10,160 64,243
PA (%) 89.62 93.47 86.20 90.96 80.80 77.63 93.92
OA (%) 87.16
Kappa 0.85

38 Z. Qi et al. / Remote Sensing of Environment 118 (2012) 21–39



Author's personal copy

Ferro-Famil, L., Pottier, E., & Lee, J. S. (2001). Unsupervised classification of multifre-
quency and fully polarimetric SAR images based on the H/A/alpha-Wishart classi-
fier. IEEE Transactions on Geoscience and Remote Sensing, 39, 2332–2342.

Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polari-
metric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36, 963–973.

Freeman, A. (2007). Fitting a two-component scattering model to polarimetric SAR data
from forests. IEEE Transactions on Geoscience and Remote Sensing, 45, 2583–2592.

Freitas, C. D., Soler, L. D., Anna, S. J. S. S., Dutra, L. V., dos Santos, J. R., Mura, J. C., & Cor-
reia, A. H. (2008). Land use and land cover mapping in the Brazilian Amazon using
polarimetric airborne p-band SAR data. IEEE Transactions on Geoscience and Remote
Sensing, 46, 2956–2970.

Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from re-
motely sensed data. Remote Sensing of Environment, 61, 399–409.

Gamba, P., & Houshmand, B. (1999). Three-dimensional road network by fusion of po-
larimetric and interferometric SAR data. Proceedings of 1999 IEEE International Geo-
science and Remote Sensing Symposium (pp. 302–304). Germany: Hamburg.

Gao, Y., Mas, J. F., Maathuis, B. H. P., Zhang, X. M., & Van Dijk, P. M. (2006). Comparison
of pixel-based and object-oriented image classification approaches — A case study
in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote
Sensing, 27, 4039–4055.

Geneletti, D., & Gorte, B. G. H. (2003). A method for object-oriented land cover classifi-
cation combining Landsat TM data and aerial photographs. International Journal of
Remote Sensing, 24, 1273–1286.

Holm, W. A., & Barnes, R. M. (1988). On radar polarization mixed state decomposition
theorems. Proceedings of the 1988 USA National Radar Conference (pp. 20–21). MI,
USA: Ann Arbor.

Huynen, J. R. (1970). Phenomenological theory of radar targets (PhD dissertation). Rotter-
dam: Drukkerij Bronder-offset N. V.

Krogager, E. (1990). New decomposition of the radar target scattering matrix. Electron-
ics Letters, 26, 1525–1527.

Laliberte, A. S., Koppa, J., Fredrickson, E. L., & Rango, A. (2006). Comparison of nearest
neighbor and rule-based decision tree classification in an object-oriented environ-
ment. Proceedings of 2006 IEEE International Geoscience and Remote Sensing Sympo-
sium (pp. 3923–3926). Denver, Colorado.

Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classifica-
tion and regression tree (CART) analysis. Photogrammetric Engineering and Remote
Sensing, 67, 1137–1142.

Lee, J. S., Grunes, M. R., & Kwok, R. (1994). Classification of multi-look polarimetric SAR
imagery-based on complex Wishart distribution. International Journal of Remote
Sensing, 15, 2299–2311.

Lee, J. S., Grunes, M. R., Ainsworth, T. L., Du, L. J., Schuler, D. L., & Cloude, S. R. (1999).
Unsupervised classification using polarimetric decomposition and the complex
Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 37,
2249–2258.

Lee, J. S., Grunes, M. R., & de Grandi, G. (1999). Polarimetric SAR speckle filtering and its
implication for classification. IEEE Transactions on Geoscience and Remote Sensing,
37, 2363–2373.

Lee, J. S., Grunes, M. R., & Pottier, E. (2001). Quantitative comparison of classification
capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Trans-
actions on Geoscience and Remote Sensing, 39, 2343–2351.

Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging from basics to applications. New
York: CRC Press.

Li, X., & Yeh, A. G. (2004). Multitemporal SAR images for monitoring cultivation sys-
tems using case-based reasoning. Remote Sensing of Environment, 90, 524–534.

Li, H. T., Gu, H. Y., Han, Y. S., & Yang, J. H. (2008). Object-oriented classification of polar-
imetric SAR imagery based on statistical region merging and support vector ma-
chine. Proceedings of the 2008 International Workshop on Earth Observation and
Remote Sensing Applications (pp. 147–152). Beijing, China.

Li, X., Yeh, A. G. O., Qian, J. P., Ai, B., & Qi, Z. X. (2009). A matching algorithm for detect-
ing land use changes using case-based reasoning. Photogrammetric Engineering and
Remote Sensing, 75, 1319–1332.

Lim, T. S., Loh, W. Y., & Shih, Y. S. (2000). A comparison of prediction accuracy, com-
plexity, and training time of thirty-three old and new classification algorithms.Ma-
chine Learning, 40, 203–228.

Loh, W. Y., & Shih, Y. S. (1997). Split selection methods for classification trees. Statistica
Sinica, 7, 815–840.

López-Martínez, C., Ferro-Famil, L. & Pottier, E. (2005). PolSARpro v4.0 Polarimetry Tu-
torial, URL: http://earth.esa.int/polsarpro/tutorial.html, European Space Agency,
Paris, France.

McCoy, R. M. (2005). Field methods in remote sensing. New York: The Guilford Press.
McIver, D. K., & Friedl, M. A. (2002). Using prior probabilities in decision-tree classifica-

tion of remotely sensed data. Remote Sensing of Environment, 81, 253–261.
Neumann, M., Ferro-Famil, L., & Pottier, E. (2009). A general model-based polarimetric

decomposition scheme for vegetated areas. Proceedings of POLINSAR'09, Frascati,
Italy.

Papathanassiou, K. P., & Cloude, S. R. (2001). Single-baseline polarimetric SAR interfer-
ometry. IEEE Transactions on Geoscience and Remote Sensing, 39, 2352–2363.

Pierce, L. E., Ulaby, F. T., Sarabandi, K., & Dobson, M. C. (1994). Knowledge-based clas-
sification of polarimetric SAR images. IEEE Transactions on Geoscience and Remote
Sensing, 32, 1081–1086.

Pierce, L. E., Bergen, K. M., Dobson, M. C., & Ulaby, F. T. (1998). Multitemporal land-
cover classification using SIR-C/X-SAR imagery. Remote Sensing of Environment,
64, 20–33.

Pottier, E., & Lee, J. S. (2000). Application of the “H/A/(alpha)under-bar” polarimetric
decomposition theorem for unsupervised classification of fully polarimetric SAR
data based on the Wishart distribution. roceedings of CEOS SAR Workshop
(pp. 335–340). Toulouse, France.

Pottier, E., J.S. Lee, & Ferro-Famil, L. (2005). PolSARpro v3.0 Lecture Notes — Advanced
concepts. URL: http://earth.esa.int/polsarpro/tutorial.html, European Space Agen-
cy, Paris, France.

Rignot, E., Chellappa, R., & Dubois, P. (1992). Unsupervised segmentation of polarimet-
ric SAR data using the covariance-matrix. IEEE Transactions on Geoscience and Re-
mote Sensing, 30, 697–705.

Roberts, D. A., Keller, M., & Soares, J. V. (2003). Studies of land-cover, land-use, and bio-
physical properties of vegetation in the large scale biosphere atmosphere experi-
ment in Amazonia. Remote Sensing of Environment, 87, 377–388.

Saatchi, S. S., Soares, J. V., & Alves, D. S. (1997). Mapping deforestation and land use in
Amazon rainforest by using SIR-C imagery. Remote Sensing of Environment, 59,
191–202.

Shimoni, M., Borghys, D., Heremans, R., Perneel, C., & Acheroy, M. (2009). Fusion of Pol-
SAR and PolInSAR data for land cover classification. International Journal of Applied
Earth Observation and Geoinformation, 11, 169–180.

Story, M., & Congalton, R. G. (1986). Accuracy assessment — A user's perspective. Pho-
togrammetric Engineering and Remote Sensing, 52, 397–399.

Swain, P. H., & Hauska, H. (1977). Decision tree classifier — Design and potential. IEEE
Transactions on Geoscience and Remote Sensing, 15, 142–147.

Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/
land cover (LULC) and irrigated area mapping using continuous streams of MODIS
data. Remote Sensing of Environment, 95, 317–341.

Touzi, R. (2007). Target scattering decomposition in terms of roll-invariant target pa-
rameters. IEEE Transactions on Geoscience and Remote Sensing, 45, 73–84.

Ulaby, F. T., Kouyate, F., Brisco, B., & Williams, T. H. L. (1986). Textural information in
SAR images. IEEE Transactions on Geoscience and Remote Sensing, 24, 235–245.

Vapnik, V. (1999). The nature of statistical learning theory. New York: Springer.
Vanzyl, J. J. (1993). Application of Cloude target decomposition theorem to polarimet-

ric imaging radar data. Radar Polarimetry, 1748, 184–191.
Watts, J. D., Lawrence, R. L., Miller, P. R., & Montagne, C. (2009). Monitoring of cropland

practices for carbon sequestration purposes in north central Montana by Landsat
remote sensing. Remote Sensing of Environment, 113, 1843–1852.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools
and techniques. Burlington, MA: Morgan Kaufmann.

Yamaguchi, Y., Moriyama, T., Ishido, M., & Yamada, H. (2005). Four-component scatter-
ing model for polarimetric SAR image decomposition. IEEE Transactions on Geosci-
ence and Remote Sensing, 43, 1699–1706.

Yang, J., Yamaguchi, Y., Yamada, H., Sengoku, M., & Lin, S. M. (1998). Stable decompo-
sition of Mueller matrix. IEICE Transactions on Communications, 1261–1268 E81b,.

Yeh, A. G. O., & Li, X. (1996). Urban growth management in the Pearl River Delta — An
integrated remote sensing and GIS approach. ITC Journal, 1, 77–86.

39Z. Qi et al. / Remote Sensing of Environment 118 (2012) 21–39


